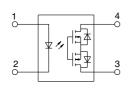
Panasonic



DIP4-pin type with current limiting and reinforced insulation

PhotoMOS® GU 1 Form A Current Limiting (AQY210HL)

4.78 6.4 .188 252 3.2 4.78 6.4 .126 .188 252 .126 .188 252 .114 (Height includes standoff)

mm inch

RoHS compliant

FEATURES

1. Current Limiting Function

To control an over current from flowing, the current limit function has been realized. It keeps an output current at a constant value when the current reaches a specified current limit value.

2. Enhances the capability of surge resistance between output terminals

The current limit function controls the ON time surge current to enhance the capability of surge resistance between output terminals.

3. Reinforced insulation of 5,000 Vrms More than 0.4 mm internal insulation distance between inputs and outputs. Conforms to EN41003, EN60950 (reinforced insulation).

4. Controls low-level analog signals

PhotoMOS feature extremely low closed-circuit offset voltage to enable control of low-level analog signals without distortion.

- 5. High sensitivity and low onresistance
- 6. Low-level off state leakage current

TYPICAL APPLICATIONS

- Telephone equipment
- Modem

TYPES

	I/O isolation voltage	Output rating*		Daakasa	Part No.				Packing quantity	
					Through hole terminal Surface-mount terminal					
		Lood	Lood	Package		Tape a		Tape and reel packing style		
		Load voltage	Load current		Tube packing style		Picked from the 1/2-pin side	Picked from the 3/4-pin side	Tube	Tape and reel
AC/DC dual use	Reinforced 5,000 Vrms	350 V	120 mA	DIP4-pin	AQY210HL	AQY210HLA	AQY210HLAX	AQY210HLAZ	1 tube contains: 100 pcs. 1 batch contains: 1,000 pcs.	1,000 pcs.

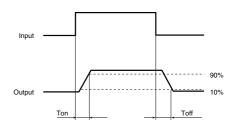
^{*}Indicate the peak AC and DC values.

Note: For space reasons, only "210HL" is marked on the product. The three initial letters of the part number "AQY", the surface mount terminal shape indicator "A" and the packing style indicator "X" or "Z" are not marked on the device.

RATING

1. Absolute maximum ratings (Ambient temperature: 25°C 77°F)

	Item		AQY210HL(A)	Remarks
	LED forward current	l _F	50 mA	
lanut	LED reverse voltage	VR	5 V	
Input	Peak forward current	IFP	1 A	f = 100 Hz, Duty factor = 0.1%
	Power dissipation	Pin	75 mW	
	Load voltage (peak AC)	VL	350 V	
Output	Continuous load current	IL.	0.12 A	Peak AC, DC
	Power dissipation	Pout	500 mW	
Total pov	Total power dissipation		550 mW	
I/O isolat	I/O isolation voltage		5,000 Vrms	
Ambient	Operating	Topr	−40 to +85°C −40 to +185°F	(Non-icing at low temperatures)
temperati	ture Storage	T _{stg}	-40 to +100°C -40 to +212°F	


sales@prom-elec.com

© Panasonic Corporation 2017

2. Electrical characteristics (Ambient temperature: 25°C 77°F)

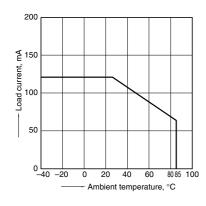
	Item		Symbol AQY210HL(A)		Condition	
Input	LED operate current	Typical	Fon	1.2 mA	IL = Max.	
	LED operate current	Maximum	IFon	3.0 mA		
	LED turn off current	Minimum	Foff	0.4 mA	IL = Max.	
	LED turn on current	Typical	IF-off	1.1 mA	IL = IVIAX.	
	LED dropout voltage	Minimum	VF	1.25 (1.14 V at I _F = 5 mA)	I _F = 50 mA	
	LED dropout voltage	Typical	V F	1.5 V	IF = 50 IIIA	
_	On resistance	Typical	- Ron	20Ω	I _F = 5 mA I _L = Max.	
	On resistance	Maximum	H ion	25Ω	Within 1 s	
Output	Off state leakage current	Maximum	ILeak	1μΑ	$I_F = 0 \text{ mA}$ $V_L = \text{Max}$.	
	Current limit	Typical	_	0.18 A	I _F = 5 mA	
	Turn on time*	Typical	Ton	0.5 ms	I _F = 5 mA	
	Turn on time	Maximum	Ion	2.0 ms	I∟ = Max.	
	Turn off time*	Typical	Toff	0.08 ms	I _F = 5 mA	
Transfer characteristics	Turn on time	Maximum	loff	1.0 ms	I∟ = Max.	
onaraotonstics	I/O conscitores	Typical		0.8 pF	f = 1 MHz	
	I/O capacitance	Maximum	Ciso	1.5 pF	V _B = 0 V	
	Initial I/O isolation resistance	Minimum	Riso	1,000 ΜΩ	500 V DC	

*Turn on/Turn off time

3. Recommended operating conditions (Ambient temperature: 25°C 77°F)

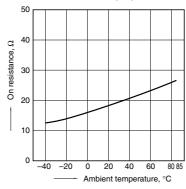
Please use under recommended operating conditions to obtain expected characteristics.

It	em	Symbol	Min.	Max.	Unit
LED	current	lF	5	30	mA
AQY210HL(A)	Load voltage (Peak AC)	VL	_	280	V
AQTZTUNL(A)	Continuous load current	l _L	_	0.12	Α

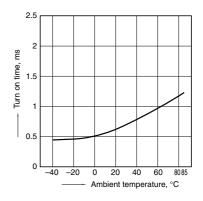

■ These products are not designed for automotive use.

If you are considering to use these products for automotive applications, please contact your local Panasonic Corporation technical representative.

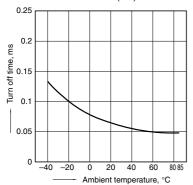
REFERENCE DATA


1. Load current vs. ambient temperature characteristics

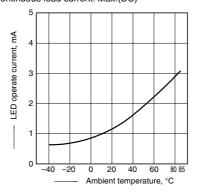
Allowable ambient temperature: -40 to $+85^{\circ}$ C -40 to $+185^{\circ}$ F


2. On resistance vs. ambient temperature characteristics

Measured portion: between terminals 3 and 4; LED current: 5 mA; Load voltage: Max. (DC) Continuous load current: Max.(DC)

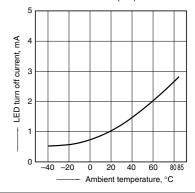

3. Turn on time vs. ambient temperature characteristics

LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)

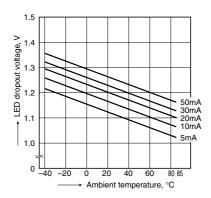


4. Turn off time vs. ambient temperature characteristics

LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)

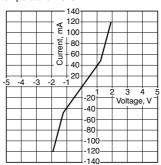


5. LED operate current vs. ambient temperature characteristics Load voltage: Max.(DC); Continuous load current: Max.(DC)

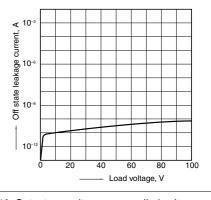


6. LED turn off current vs. ambient temperature characteristics

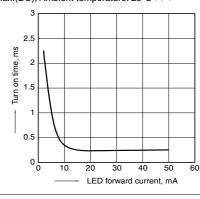
Load voltage: Max.(DC); Continuous load current: Max.(DC)



7. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA


8. Current vs. voltage characteristics of output at MOS portion

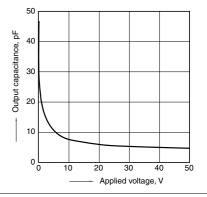
Measured portion: between terminals 3 and 4; Ambient temperature: 25°C 77°F


9. Off state leakage current vs. load voltage characteristics

Measured portion: between terminals 3 and 4; Ambient temperature: 25°C 77°F

10. Turn on time vs. LED forward current characteristics

Measured portion: between terminals 3 and 4: Load voltage: Max.(DC); Continuous load current: Max.(DC); Ambient temperature: 25°C 77

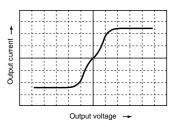

11. Turn off time vs. LED forward current characteristics

Measured portion: between terminals 3 and 4: Load voltage: Max.(DC); Continuous load current: Max.(DC); Ambient temperature: 25°C 77

12. Output capacitance vs. applied voltage

Measured portion: between terminals 3 and 4; Frequency: 1 MHz; Ambient temperature: 25°C 77°F

What is current limit


When a load current reaches the specified output control current, a current limit function works against the load current to keep the current a constant value.

The current limit circuit built into the PhotoMOS thus controls the instantaneous load current to effectively ensure circuit safety.

This safety feature protects circuits downstream of the PhotoMOS against over-current.

But, if the current-limiting feature is used longer than the specified time, the PhotoMOS can be destroyed. Therefore, set the output loss to the max. rate or

· Comparison of output voltage and output current characteristics V-I Characteristics

© Panasonic Corporation 2017